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The hydrogen abstraction reaction from H2 by the Cl atom is studied by means of the variational transition
state theory with semiclassical tunneling coefficients on the BW2 potential energy surface. Vibrational
anharmonicity and coupling between the bending modes are taken into account. The occurrence of trajectories
that recross the transition state is estimated by means of the canonical unified statistical method and by
classical trajectories calculations. Different semiclassical methods for tunneling calculations are tested. Our
results show that anharmonicity has a small but nonnegligible effect on the thermal rate constants, recrossing
can be neglected, and tunneling is adequately described by the least-action approximation, and less successfully
by the large-curvature version 3 approximation. However, the large-curvature version 4 and small-curvature
approximations lead to a severe underestimation of tunneling. Thermal rate constants calculated using transition
state theory including anharmonicity and tunneling agree very well with accurate quantal thermal rate constants
over a wide temperature range, although the improvement over the harmonic transition state theory with the
microcanonically optimized semiclassical tunneling approximation (based on version 3 of the large-curvature
tunneling method) used in a previous study of this reaction is only marginal.

1. Introduction

Variational transition state theory (VTST) with semiclassical
tunneling (ST) is one of the most widely used methods for
calculating thermal rate constants of polyatomic systems, and
the emergence of computer programs that facilitate this kind of
calculations, such as Polyrate,1 Abcrate,2 or Doit,3 are popular-
izing its use. Besides the approximations inherent in the VTST
and ST methods, additional approximations are usually made
in order to speed up the rate constant calculations, such as
considering the vibrational modes to be separable and harmonic.

There is a very large number of studies comparing VTST/
ST rate constants with experimental values.4 The agreement
between computed and experimental values is taken as a
confirmation of the reliability of the VTST/ST approximation
for kinetics studies. However, the quality of the numerical or
analytical potential energy surface (PES) employed for the
calculation of the rate constants can mask or enhance the validity
of the VTST/ST approximations. Hence, it is from the com-
parison of accurate quantal and VTST/ST rate constants, both
obtained using the same PES, that we can learn the most about
the soundness of the VTST/ST method. Fortunately, such studies
are also abundant,5-7 leading to the same conclusions: VTST/
ST methods can accurately describe the kinetics of most
reactions. The quality of the PES also plays an important role
in this comparison; only realistic PESs can allow us to conclude
whether in real-world settings VTST/ST will behave as ex-
pected. Unfortunately, realistic PESs are hard to obtain, and
only a small number of them are available.

One of the most realistic PESs is the one by Bian and Werner
for the H2Cl system,8 denoted as BW2, which has been recently

improved to obtain a relativistic PES that includes spin-orbit
effects.9 The latter has been used in the calculation of quantal
thermal rate constants explicitly including spin-orbit effects.10

The authors found that an excellent approximation is to assume
that the only effect that spin-orbit coupling has on rate constant
calculations is to shift the asymptotic potential energy of the
Cl + H2 reactants. Quantal rate constants calculated under this
approximation are available in a wide temperature range.11

Therefore, the hydrogen abstraction reaction H2 + Cl f H +
HCl on the BW2 PES is a good candidate for testing the
accuracy of VTST/ST, which is based on the Born-Oppen-
heimer approximation and, therefore, can only take into account
spin-orbit coupling by changing the asymptotic energy of the
reactants.

From the results by Wang and Bian,12 who used the VTST/
ST method under the harmonic approximation for the calculation
of thermal rate constants on this PES, we can infer that the
VTST/ST method yields results in good agreement with the
accurate quantal rate constants by Manthe et al.11 The goal of
the present work is to analyze the influence of different factors
which may affect the performance of the VTST/ST methods,
particularly (a) vibrational anharmonicity, (b) recrossing of the
transition state, and (c) semiclassical tunneling approximations.
The choice of an atom-diatom reaction is justified by the fact
that the most reliable methods for including vibrational anhar-
monicity and tunneling effects are only available for triatomic
systems. Moreover, accurate quantal rate constants are, with
few exceptions, only available for tri- and tetraatomic systems.

The importance of anharmonicity will be the subject of most
of our work. The reason is that the majority of the VTST/ST
calculations assume that the vibrational modes can be considered
as harmonic. Moreover, as we will see below, it will be an† Part of the special issue “Donald G. Truhlar Festschrift”.
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important factor in the choice of the tunneling method. In
addition, we will also analyze several factors that are usually
overlooked, such as the numerical stability of the calculations
or the importance of quantum effects on the rotational partition
functions.

The paper is organized as follows: In section 2, we review
some previous work that compares VTST/ST with quantal
accurate rate constants, highlighting the results on the H2 + Cl
f H + HCl reaction. In section 3, we give an overview of the
methods and computational details. In section 4, we show the
results of our calculations. The final section presents our
conclusions on this reaction.

2. Transition State Theory with Semiclassical Tunneling
vs Quantal Rate Constants

As we mentioned in the previous section, the most significant
test of VTST/ST is to compare VTST/ST rate constants to rate
constants calculated using accurate quantum-mechanical meth-
ods on the same PES. The number of such studies is large,
starting with the pioneering work of Truhlar and Kuppermann,5

and up to 1998, they can be summarized by the conclusions of
the work by Allison and Truhlar.7 Their study of 74 atom-
diatom reactions can be condensed in their statement that VTST/
ST “rate coefficients are generally in excellent agreement with
the accurate quantal data”. They find that the mean unsigned
percentage errors in VTST/ST calculations of thermal rate
constants are smaller than 35% all over the temperature range
when using the improved canonical variational transition state
theory with least-action tunneling (ICVT/LAT) method includ-
ing vibrational anharmonicity (which is the best method we used
in the present work). When they use the harmonic approximation
the mean error increases up to 43%.

With respect to the H2Cl system, their conclusions are in line
with these general findings. Thus, when the reaction is assumed
to be collinear (one-dimensional) the mean unsigned percentage
error of the ICVT/LAT method is smaller than 10%. When the
reaction is considered to take place in the three-dimensional
world, the differences between VTST/ST and quantal thermal
rate constants never exceed 16%.7,13 Isotopic substitutions do
not change these conclusions. However, they found larger
discrepancies between VTST/ST and quantal one-dimensional
state-selected rate constants. Thus, when H2 is in its first excited
state the ratio between ICVT/LAT and quantal rate constants
ranges between 1.90 and 2.34. Isotopic substitution increases
this ratio up to 3.57 at 200 K for the perdeuterated state-selected
reaction.

Sometimes the comparison between quantal and VTST/ST
rate constants has given disappointing results. Thus, studies of
the HCl + O(3P) reaction14,15 show that the VTST/ST rate
constants are much lower than quantal rates at low temperatures,
up to a factor of 20 at 200 K, 2.4 at 500 K, and 1.3 at 1000 K.
The source of this somewhat surprising result was attributed15

to resonances found in the cumulative reaction probability,
purportedly caused by the influence of van der Waals wells (note
that VTST/ST methods are almost insensitive to the presence
of these wells). In fact, VTST/ST methods are more prone to
fail when these resonances are important at low energies that
can have a significant impact on the thermal rate constant. For
example, the VTST/ST and quantal rates of this reaction based
on an older PES16 are in better accord,14 since the quantal
cumulative reaction probability shows resonances at high
energies that have less effect on the thermal rate constants. It
has also been postulated that the reasons behind VTST/ST
failure are the importance of bend-stretch coupling and bend-
rotation coupling.14

Quantal thermal rate constants have been recently available
for a more complex system,17 the hydrogen abstraction reaction
CH4 + H f CH3 + H2, based on the PES by Jordan and
Gilbert.18 This is a good example of the need to compare VTST/
ST and quantal results based on the same PES to check the
behavior of the VTST/ST methods. The VTST/ST rate constants
on Jordan and Gilbert’s PES are much higher than experimental
rate constants.19 However, VTST/ST and accurate quantal rates
agree within 21% over all of the temperature range investi-
gated.20 Hence, VTST/ST methods show an excellent perfor-
mance for this reaction and the discrepancy between experi-
mental and theoretical results is due to deficiencies in the PES.

The same conclusions about the validity of the VTST/ST
methods are found in the study of the hydrogen abstraction
reaction of CH4 + O(3P),21 which shows that quantal and VTST/
ST rate constants agree well (within 50%). In this case, the PES
was fitted so that harmonic VTST/ST rate constants reproduce
the experimental values;22 as a consequence, the VTST/ST rate
constants are closer to the experimental rates than quantal rates.

Recently Wang and Bian12 calculated VTST/ST rate constants
and kinetic isotope effects for the hydrogen abstraction and
exchange reactions in the H2 + Cl system using the BW2
surface. Their results are in excellent agreement with experi-
mental values, except at high temperatures. When compared
with the quantal rate constants of Manthe et al.11 for the
hydrogen abstraction reaction using the same BW2 surface, the
low-temperature VTST/ST rate constants as well as the high-
temperature rate constants are somewhat greater than the quantal
results. For example, VTST/ST rates are 43%, 5%, and 92%
greater than the accurate quantal rates at 200, 500, and 1500 K,
respectively.

3. Theoretical Methods and Computational Details

Although the VTST/ST methods have been described in many
articles and books (see ref 23 and references therein), for the
sake of clarity, we will outline them here. Some relevant
computational details are also given.

As the first step, one starts locating the reactants and saddle
point of the reaction on the PES. The reaction path is initiated
at the saddle point by following the imaginary-frequency normal
mode eigenvector on each side of the saddle point. Once we
have taken the first step on the reaction path, we are no longer
in a stationary point and we can follow the gradient direction.
Thus, we follow the steepest descent path in isoinertial
coordinates24 all the way to reactants and products. The distance
to the saddle point along the reaction path in mass-scaled
coordinates is the reaction coordinate,s, which is taken as
negative on the reactant side of the reaction path and positive
on the product side. The reduced mass used in defining the mass-
scaled coordinates was set to the value of the reduced mass of
the H2 + Cl system.

It is not necessary, though, to calculate the entire reaction
path all the way to reactants and products; only a fraction of
the reaction path is required for VTST calculations. We
computed the reaction path over the range betweens ) -4
ands ) +4 au. The step size for following the gradient was
taken to be 0.005 au. These values were checked to be small
enough as to give accurate results.

However, such a small step size causes numerical instabilities.
For example, in the vicinity of the saddle point the gradients
are so small that some magnitudes that are calculated using
numerical derivatives of the gradient were found to be quite
noisy, especially reaction path curvature components and quartic
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bending force constants. To eliminate this noise we apply the
moving average method. This way, the vibrational partition
functions, vibrational turning points, and reaction path curvature
change smoothly all along the reaction path. An alternative is
to use sophisticated reaction-path following algorithms which
allow much larger step-sizes, as described elsewhere.25,26

However, since reaction path curvature presents sharp peaks,
we require a small step-size to avoid missing these peaks.

Along the reaction path a normal-mode analysis was per-
formed in internal coordinates,27 projecting out the gradient
direction.28 Having obtained the classical (Born-Oppenheimer)
potential energy, geometry, and vibrational frequencies along
the reaction path and reactants, we can calculate the rotational
moments of inertia and quantal rotational partition functions,
vibrational zero-point energies and quantal vibrational partition
functions, and the vibrationally adiabatic ground-state potential
energy,Va

G(s), which is defined as the sum of the potential
energy and the vibrational zero-point energy, all as a function
of the reaction coordinate,s. The maximum of the adiabatic
ground-state energy is the threshold energy for the classical
reaction probability. Note that we are neglecting rotation-
vibration coupling, but we still include coupling between
vibrational modes.

The saddle point for this reaction and the geometries along
the reaction path are linear. Therefore, there are three bound
vibrational modes along the reaction path: a symmetric stretch
and a doubly degenerate bend. At this point we neglect the
coupling between the stretching mode and the bending modes
and we calculate the vibrational partition function as the product
of the stretching mode partition function and the doubly
degenerate bending modes partition function.

The stretch partition function is computed by summing over
the Boltzmann factors of the vibrational energy levels. The
ground-state energy is determined by the Wentzel-Kramers-
Brillouin (WKB) approximation,29 but the excited-state energies
are determined from the parameters resulting of a Morse fit to
the potential.30

The coupling between vibrations is expected to be reduced
with the use of internal coordinates. In any case, the coupling
between the two degenerate bending modes is taken into account
by calculating the bend partition function using the centrifugal
oscillator model.31 For comparison, we also calculate the
bending mode partition function as the product of two inde-
pendent vibrational partition functions, one for each bend; the
energy levels are determined from a harmonic-quartic potential
fit to the true potential.30,31

It is important to note that the methods used here are valid if
the collinear reaction coordinate is the minimum energy path.
In this reaction, however, as we move out of the saddle point
in the reactant direction, we approach a T-shaped complex
between H2 and Cl.11 The reaction path bifurcates; the collinear
path becomes a ridge path, the bending potential for collinear
geometries is a double well, and two bent minimum energy paths
appear, but the reaction-path following algorithm follows the
collinear ridge path. Therefore, our anharmonic treatment of
the bending modes may be unphysical. Moreover, since we are
on a ridge, the bending harmonic frequency is imaginary and
the harmonic approach breaks down. Fortunately, the range of
the reaction path for which the collinear path is not the minimum
energy path is far from the saddle point, having no influence
on the rate constant calculation.

Finally, for comparison purposes, we also used the indepen-
dent normal mode harmonic approximation to compute the
vibrational partition functions.

As discussed in ref 10, the spin-orbit splitting lowers the
energy of the reactants by 0.84 kcal/mol relative to the reaction
path, where spin-orbit splitting is quenched. This can be
accomplished by using an appropriate electronic partition
function for the Cl reactant that lowers the energy of the
reactants by this amount and takes into account the two
electronic states of the Cl atom (see eq 13 of ref 11).

The conventional transition state theory (TST) rate constant
depends on the ratio of the saddle point partition function to
the reactants partition function, as described elsewhere.30 Note
that rotation and vibrations are quantized on the whole reaction
path (including reactants), but reaction coordinate motion is not.
In this paper, we call this semiclassical.

According to the variational transition state theory, the best
transition state is not necessarily at the saddle point. Therefore,
we variationally optimize the transition state location by
minimizing the semiclassical rate constant with respect tos,
which is equivalent to maximizing the free energy of activation,
and we call this rate constant canonical variational transition
state theory semiclassical rate constant (CVT). Note that the
vibrationally adiabatic ground-state potential energy is equiva-
lent to the free energy at 0 K along the reaction path, and that
the location of the transition state,sCVT(T), is temperature
dependent.

Canonical transition state theory assumes that any molecule
which achieves the transition state free energy will break down
to products and that systems do not cross energy barriers
multiple times. Therefore, if the system recrosses the transition
state more than once, transition state theory (at least in the
classical world) overestimates the true rate constant. Variational
transition state theory optimizes the location of the transition
state to minimize recrossing. It is useful to define the variational
effect as the ratio of the TST and CVT rate constants, which is
equal to or greater than unity, and measures the distance between
the optimum transition state and the saddle point.

We can define the recrossing factor (Γ) as the ratio between
the number of reactive trajectories and the number of times that
the transition state is crossed in the products direction; we
assume that this factor is the same as the ratio of the exact rate
constant and the transition state rate constant. Thus, the rate
constant may be calculated as the product ofΓ and the transition
state theory rate constant. To estimate the recrossing factor, we
ran classical trajectories starting from reactants and products
and counted the number of trajectories reaching the products
and reactants, respectively, and the number of times that the
transition state was crossed. (Since variational effects were found
to be very small, we counted the number of times that the saddle
point was crossed.) The ratio between them isΓ. The thermal
average of energy-dependent recrossing factors is the temper-
ature-dependent recrossing factor. Trajectory calculations were
performed using a modified version of the program Mariner,32

which is a customized version of Venus96.33

This kind of calculation is computationally very demanding,
especially if an analytical PES is not available. Hence, we
calculate the recrossing factor by means of the canonical unified
statistical theory (CUS).34 This method can only be applied if
the free energy curve has at least two maxima and the recrossing
factor is not very different from unity (the minimum valueΓ
can have is 0.5). The CUS recrossing factor depends on the
ratio between the CVT rate constant and the rate constant
calculated at the second maximum of the free energy curve,
and also on the ratio between the CVT rate constant and the
rate constant calculated at the minumum between the two
maxima.30 The closer the energy of the second maximum is to
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the energy of the minimum, the less recrossing it predicts,
reaching theΓ ) 1 limit when the second maximum disappears.
However, if the energy the two maxima are close in energy
and the minimum is significantly lower,Γ approaches 0.5. Thus,
if the transition state is located at the maximum closest to
reactants, the system may cross the transition state and be
trapped at the minimum, from which it stands an equal chance
of emerging in either the forward or reverse directions, andΓ
) 0.5.

We also used another method to calculateΓ: the classical
dynamical approach based on the reaction path curvature of
Miller,30,35 in its canonical form. This approach assumes that
transition state theory is exact below a certain critical energy.
According to our calculations the critical energy is at least 12
kcal/mol higher than the energy at the saddle point and canonical
recrossing factors are negligibly smaller than unity all over the
temperature range. Therefore, we will not discuss these results
any further.

To include quantum effects on the reaction coordinate we
multiply the semiclassical rate constant by a factor that we call
tunneling factor,κ, since tunneling is the dominant quantum
effect, although we also take into account the nonclassical
reflection.κ is sometimes called transmission factor, but since
we are also calculatingΓ, the transmission factor in our
calculations would be the product ofΓ andκ.

A potential barrier is impenetrable to a particle whose energy
is lower than the height of the barrier in classical mechanics.
However, in quantum mechanics, the probability that the particle
passes through the barrier is not zero. This phenomenon is called
the tunneling effect. The tunneling probability decreases with
the barrier thickness, the barrier height, and increasing mass.
Nonclassical reflection is the reflection caused by diffraction
from the barrier top even when the energy is above the barrier.
If the barrier is assumed to be parabolic in the region near the
maximum, then it can be shown semiclassically that for an
energy above the barrier byδE, the reflection probability is
equal to the tunneling probability for an energy below the barrier
by δE. Thus, the reflection probability for energies above the
barrier can be calculated from the tunneling probabilities.30

In a quantum mechanical world, the lowest energy along the
reaction path is the vibrationally adiabatic ground-state potential
energy. At low temperatures, where tunneling is most important
(the population of the energy levels that are above the barrier
to reaction is very small and most of the reaction takes place
by tunneling), a quantized system is in its ground state, so that
the potential governing the reaction path motion can be taken
to be the vibrationally adiabatic ground-state potential energy
curve. Therefore, tunneling probability can be calculated as the
probability of tunneling through theVa

G(s) barrier. This is the
zero-curvature tunneling (ZCT) method.36 Note that although
we calculate the probability of tunneling through a one-
dimensional barrier, we take into account the multidimensional
nature of the tunneling effect, since all the vibrational modes
contribute toVa

G(s).
In the absence of reaction path curvature, no internal

centrifugal forces would take the system out of the reaction path.
However, if the reaction path is curved, the centrifugal forces
can move it from the reaction path. In the classically forbidden
region the kinetic energy is negative, leading to a negative
centrifugal effect. The system moves to the inner side of the
reaction path, within the ground-state vibrational amplitude,
following a new path, the path of concave-side zero-point energy
turning points for the mode coupled to the reaction coordinate
by reaction-path curvature, as shown by Marcus and Coltrin37

for the H + H2 reaction. Here we use a general version of the
method that uses a mass for tunneling calculations that depends
on the reaction-path curvature, named centrifugal-dominant
small-curvature semiclassical adiabatic ground-state tunnel-
ing,38,39 or, for short, small-curvature tunneling (SCT).

When the reaction path curvature is large, the centrifugal
forces can push the system beyond the transverse vibrational
turning points to a nonadiabatic zone. Hence, the large-curvature
tunneling (LCT) methods need to be applied; the most com-
monly used are LCT versions 3 (LCT3)38,40 and 4 (LCT4).41

The LCT methods assume that the tunneling path is a straight
line in isoinertial coordinates from the reactant channel to the
product channel. The tunneling path is divided into three zones,
two of them are in the reactant and product channels, respec-
tively, and they are vibrationally adiabatic, and another zone
describes the middle zone of the path and is vibrationally
nonadiabatic. Note that for some PESs, the vibrationally
nonadiabatic zone does not exist at all energies. It has been
noted that the LCT3 method within the harmonic approximation
can lead to unphysical resutls:41 the maximum of the effective
potential for tunneling is sometimes lower than the maximum
of the Va

G(s) curve. This is related to errors in the transition
between the adiabatic and nonadiabatic regions due to anhar-
monicity. LCT441 includes an anharmonic correction in the
vibrationally nonadiabatic region of the tunneling path, calcu-
lated as the difference in effective potential energy between
adiabatic and nonadiabatic zones computed at the boundary.
Since there are two boundaries for each tunneling path with
nonadiabatic regions, the anharmonic correction along the
nonadiabatic region is obtained by interpolation. Since the LCT4
method was developed to take better account of anharmonicity,
it is not useful when anharmonicity is taken into account for
the tunneling path calculation. Therefore, it will only be used
for LCT calculations under the harmonic approximation.

Note that since LCT methods include a nonadiabatic region,
the system enters the tunneling path in its ground state but it
can tunnel into vibrational excited states. Nevertheless, we found
that in this reaction vibrational excited states were not accessible;
only ground-state to ground-state tunneling is energetically
allowed.

LCT and SCT tunneling paths are two limit situations: SCT
assumes that tunneling is basically in the reaction coordinate
direction and the effective tunneling path is at or near the path
of outer turning points for the bound vibrational motions coupled
by the reaction path curvature to the reaction coordinate, while
LCT assumes that the tunneling occurs along the shortest path
between the reactant and product channels. However, for a given
energy, the SCT tunneling path may be very long and the LCT
tunneling path may have a very high barrier. Thus, for systems
with intermediate reaction path curvature the optimum tunneling
path must be intermediate to the two paths mentioned above.
Hence, a method was developed to treat all kinds of systems,
based on choosing the best tunneling path from a sequence of
paths intermediate to the LCT and SCT paths. Maximum
tunneling along the path is equivalent to least imaginary-action
integral along the path;30 this is why this method is called the
least-action tunneling method (LAT).30,42,43

Although the LAT method is the most accurate of the
semiclassical methods usually used along with variational
transition state theory, the variational optimization of the
tunneling path is a cumbersome procedure, and it is not available
for polyatomic systems. Consequently, an approximation to the
LAT method called microcanonically optimized multidimen-
sional tunneling (µOMT)44 is mostly used. It involves comparing
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the SCT to the LCT methods and choosing, at each tunneling
energy, the one that maximizes the tunneling probability at that
energy.

Note that there is an inconsistency in how quantum effects
and CVT semiclassical thresholds are handled. The energy
threshold for tunneling is given by the maximum ofVa

G(s), being
higher than the semiclassical energy threshold for reaction,
Va

G[sCVT(T)]. Tunneling occurs at energies below the maximum
of Va

G(s) and classical reaction occurs at energies above
Va

G[sCVT(T)]. Therefore, trajectories with total energy between
Va

G[sCVT(T)] and the maximum ofVa
G(s) are counted twice:

once in the tunneling calculation and once in the semiclassical
CVT calculation. For this reason, we need to eliminate from
the transition state partition functions the contribution from
below the vibrationally adiabatic ground-state threshold, obtain-
ing improved partition functions.45 Using these improved
partition functions we calculate the improved CVT (ICVT)45

rate constants. In our calculations, the ICVT results are within
2% of the results obtained with the microcanonical version of
the variational transition state theory.30

All the VTST/ST calculations were carried out using Polyrate1

and a locally modified version of Abcrate.2

4. Results

4.1. Semiclassical Rate Constants.We start by analyzing a
factor that is usually overlooked: quantum effects on rotations.
Since rotational levels are closely spaced, rotational partition
functions are frequently calculated using classical mechanics.
We find that, at the lowest temperature under study, 150 K, the
quantum and classical rotational partition functions of the saddle
point differ only by 3% and above 500 K they differ by less
than 1%. However, the quantum mechanical partition function
of the H2 reactant is higher than its classical counterpart by
22% at 150 K, 10% at 300 K, and 5% at 600 K. Therefore,
neglecting quantum effects on H2 rotation causes low temper-
ature rate constants to be overestimated by up to 18% at 150
K. Thus, rotational partition functions are treated quantum
mechanically in the rest of the paper.

Since vibrational energy levels are discrete, the vibrational
partition functions are calculated quantum mechanically. For
the sake of clarity, we start by analyzing the effects of
anharmonicity on the semiclassical conventional transition state
theory rate constants (TST). Table 1 lists the TST rate constants
calculated with harmonic vibrational zero-point energies and
partition functions (second column), TST rate constants includ-
ing anharmonic contributions from the stretching mode (third
column), TST rate constants assuming that the stretching and
bending modes are separable anharmonic oscillators (fourth
column), and the TST rate constants using the WKB ap-
proximation to treat the ground-state vibrational stretch, the
Morse approximation for excited states of the stretch, and the

centrifugal oscillator approximation for the bends (fifth column).
Table 1 shows that the coupling between the two bending modes
has a very small effect on the rates: columns four and five differ
by less than 5%. However, the effect of treating the bending
modes as separable harmonic vibrators is significant: the rate
constants in column three are around 20% higher than the fully
anharmonic rates. This effect is more pronounced at both edges
of the temperature range. The largest difference is found at high
temperatures (33% at 2100 K). Finally, the effect of anharmo-
nicity on the vibrational stretch diminishes as temperature
increases, so that the difference between the fully harmonic and
the fully anharmonic rate constants at 2100 K is due to the
anharmonicity of the bending modes. Table 1 also shows that
above 400 K stretch anharmonicity changes the rate constants
by less than 10%. Therefore, stretch anharmonicity is significant
only at low temperatures.

In brief, fully harmonic rate constants (second column) are
higher than fully anharmonic rate constants (fifth column) by
less than 30% over the temperature range from 300 to 1500 K.
Therefore, the harmonic approximation works reasonably well
for semiclassical TST.

Anharmonicity of the stretching mode deserves further study.
The two bending modes evolve into free rotations or translations
at reactants and products, but the symmetric stretch of the saddle
point evolve into the H2 stretching mode at reactants. The stretch
partition function of the saddle point is in the numerator of the
rate constant expression, and the H2 stretch partition function
is in the denominator. Therefore, the small effect of vibrational
anharmonicity on the rate constant may be due to the validity
of the harmonic oscillator model, or to the fact that the saddle
point stretch anharmonicity is partially canceled by the H2

anharmonicity.
At 200 K the value of the anharmonic vibrational partition

function of H2 is 1.61× 10-7, while its harmonic counterpart
is 20% lower, 1.29× 10-7. At 1500 K, they are 0.126 and
0.122 respectively; they differ by less than 3%. With respect to
the saddle point, the values of the 200 K anharmonic and
harmonic stretch partition functions are 7.67× 10-3 and 7.50
× 10-3, respectively, while at 1500 K they are 0.726 and 0.715;
the difference is around 2%, and it is almost independent of
temperature. Hence, the harmonic approximation works very
well for the stretching mode of the saddle point, and reasonably
well for the H2 stretch. Moreover, most of the differences
between harmonic and anharmonic TST rate constants at low
temperatures are due to the anharmonicity of the H2 vibrational
stretch.

As we mentioned above, only the ground state energy of the
stretching mode is computed by the WKB method based on
the true potential, and the excited states are calculated from a
Morse fit. Since stretching vibrational frequencies are relatively
high (4409 cm-1 at reactants and 1360 cm-1 at the saddle point),

TABLE 1: Conventional Transition State Theory Rate Constants (in cm3‚molécule-1‚s-1) for the H2 + Cl Reaction (in
Parentheses, Percentage Deviation from the Fully Anharmonic Results)

T (K) harmonic harmonic bends uncoupled bends fully anharmonic

150 4.75× 10-19 (55%) 3.66× 10-19 (19%) 3.07× 10-19 (0%) 3.06× 10-19

200 5.04× 10-17 (40%) 4.14× 10-17 (15%) 3.60× 10-17 (0%) 3.59× 10-17

250 8.31× 10-16 (33%) 7.10× 10-16 (13%) 6.29× 10-16 (0%) 6.26× 10-16

300 5.45× 10-15 (28%) 4.78× 10-15 (13%) 4.27× 10-15 (1%) 4.24× 10-15

400 5.95× 10-14 (24%) 5.40× 10-14 (13%) 4.85× 10-14 (1%) 4.79× 10-14

600 7.32× 10-13 (22%) 6.88× 10-13 (15%) 6.12× 10-13 (2%) 6.00× 10-13

800 2.89× 10-12 (22%) 2.77× 10-12 (17%) 2.43× 10-12 (3%) 2.36× 10-12

1000 7.19× 10-12 (24%) 6.96× 10-12 (20%) 6.00× 10-12 (3%) 5.81× 10-12

1500 2.98× 10-11 (28%) 2.93× 10-11 (26%) 2.42× 10-11 (4%) 2.32× 10-11

2100 8.22× 10-11 (34%) 8.14× 10-11 (33%) 6.44× 10-11 (5%) 6.11× 10-11
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the population of excited states is very small over the temper-
ature range under study. Therefore, the choice of the model for
describing the excited states is expected to have little effect on
the vibrational partition functions. Thus, the use of the harmonic
approximation instead of the Morse model reduces the partition
function of the saddle point by only 1.5% at 1500 K, the
differences at lower temperatures are negligible, and the H2

partition function is almost unaffected. We can therefore
conclude that it suffices to treat the ground state of vibrational
stretch accurately to include most of the anharmonicity effects
on stretches.

After studying the importance of anharmonicity on conven-
tional transition state, we proceed to analyze variational transi-
tion state theory calculations. It has to be noted that our study
on the effects of anharmonicity based on the saddle point are
applicable here, since variational effects are very small over all
the temperature range. As temperature increases, the optimum
transition state moves toward products, but it does it so slowly
that anharmonic conventional and variational transition state
theory rate constants agree within 1%. Under the harmonic
approximation, the variational effects are slightly larger; the
harmonic TST rate constants are 18% higher than the harmonic
ICVT results at 150 K, and the transition state is located on the
reactant side of the reaction path. As temperature increases, the
transition state moves in the product direction, getting closer
to the saddle point; variational effects vanish (3% at 200 K,
and less than 1% above 400 K).

Looking at the harmonic and anharmonic zero-point energies,
we find that the contribution from bending modes is smaller
under the harmonic approximation. In both cases, it reaches a
maximum at the saddle point and the motion along the reaction
coordinate leads to a larger decrease of the zero-point energy
of the bending modes when they are treated as anharmonic
coupled oscillators. The contribution from the stretching mode
is very similar whether we use the harmonic or anharmonic
results for the saddle point, as we discussed above. The zero
point energy of the stretch has a minimum at the saddle point
and the motion along the reaction coordinate leads to a larger
increase of the zero-point energy of the stretching mode when
it is treated as a harmonic oscillator.

At low temperatures, as we start descending from the saddle
point to reactants, we find that, near the saddle point, the
decrease in free energy due to the contributions of the harmonic
bending modes and the classical potential energy is smaller than
the increase in free energy due to the contribution of the
harmonic stretching mode. Thus, the harmonic transition state
at low temperatures is located on the reactant side of the reaction
path (sCVT ) -0.3 au at 0 K) because of the changes in the
stretching mode frequency. On the other hand, as the temper-
ature increases the contribution of the bending modes becomes
more significant. As a result, the transition state approaches the
saddle point location, since the harmonic frequency of the
bending modes peaks near the saddle point. So, variational
effects computed under the harmonic approximation are sig-
nificant only at very low temperatures.

Conversely, the factor that controls the location of the
transition state under an anharmonic approximation is the
contibution of the bending modes. The reason is the contribution
of the quartic terms which also reach their maximum in the
saddle point zone. This is why the variational effects on
anharmonic semiclassical rate constants are negligible.

Therefore, although harmonic calculations overestimate the
conventional TST rate constants, this overestimation is partially
compensated by variational effects. As a result, harmonic ICVT

rate constants give better agreement with anharmonic ICVT rate
constants than their conventional TST counterparts. Thus, the
greatest difference between harmonic and anharmonic rates is
36% at 200 K.

4.2. Recrossing Factors.Transition state theory implies the
assumption of no recrossing trajectories that would lead to an
overestimation of the rates by the statistical rate theory. This
assumption is usually fulfilled for bimolecular gas-phase reac-
tions, when the free energy along the reaction path has only
one maximum. However, the free energy along the Cl+ H2

reaction path presents two maxima near the saddle point. Figure
1 shows the vibrationally adiabatic ground-state potential energy
along the reaction path (which is equivalent to the free energy
of activation at 0 K) calculated using harmonic and anharmonic
vibrational zero-point energies. The anharmonic energy shows
a global maximum at the saddle point, and a local maximum
0.3 kcal/mol lower in energy than the global one, on the reactant
side, ats) -0.3 au. In opposition, harmonic calculations predict
the latter to be the global maximum, although the former is
almost equally high. It has to be noted that the different shape
of the two energy curves is due to the above-mentioned fact
that the harmonic bending energy is lower than the anharmonic
bending energy ats ) -0.3 au, while the harmonic stretching
energy is higher than its anharmonic counterpart.

The presence of a second maximum near the transition state
may be responsible for some transition state recrossing.
Trajectories may be trapped in the minimum between the two
maxima, crossing the transition state several times before
reverting to reactants or evolving to products. Since the
minimum is close in energy to the lowest maximum, it seems
difficult to trap trajectories long enough to originate a significant
recrossing of the transition state. This is especially true for
anharmonic calculations, which give almost the same energy
for the lowest maximum and the minimum. Thus, recrossing
effects are expected to be negligible.

To check this assumption, we calculated recrossing factors
using two methods, besides Miller’s classical canonical correc-
tion35 discussed previously: the canonical unified statistical
(CUS) theory and a statistical analysis of classical trajectories.

The CUS method with anharmonic vibrations predicts
recrossing factors very close to unity. For temperatures below

Figure 1. Vibrationally adiabatic ground-state potential energy,
Va

G(s). The solid line is based on anharmonic zero-point energies, and
the dotted line is based on harmonic zero-point energies.

594 J. Phys. Chem. A, Vol. 110, No. 2, 2006 Sanso´n et al.



400 K the recrossing factor,Γ, is higher than 0.99, and it slightly
diminishes as temperature increases. The lowest value that we
found forΓ is 0.81 at 2100 K. The reason is that the two maxima
of the free energy become more similar to one another as the
temperature increases.

However, when we assume that vibrations are harmonic we
find that the higher the temperature, the closer to unity the value
of Γ. The reason is that at high temperatures the maximum at
s ) -0.3 au disappears, giving rise to a single maximum for
the harmonic free energy profile located at the saddle point
(s ) 0.0 au). Thus, the harmonic CUS factor is higher than
0.99 at temperatures above 600 K, and the lowest value forΓ
is found at 150 K (Γ ) 0.70).

We also obtainedΓ by running classical trajectories from
reactants to products and viceversa; the temperature-dependent
Γ is the thermal average of the energy-dependent recrossing
factor for each trajectory. (The transition state was assumed to
be located at the saddle point for all the trajectories.) We found
that the energy-dependent recrossing factor is higher than 0.99
for most of the thermally accessible trajectories below 400 K
and lower than 0.90 only at very high total energies, whose
contribution to the reactivity below 1500 K is smaller than 1%.
As a result, the thermally averaged recrossing factors are closer
to unity than the anharmonic CUS factors. Thus, the lowest
value we obtained from trajectories isΓ ) 0.96 at 2100 K.
Although in both casesΓ increases with temperature, the
temperature dependence predicted by classical trajectories is
weaker, as seen in Figure 2. Note that harmonic CUS factors
predict the opposite temperature dependence. In brief, anhar-
monic CUS and classical trajectories recrossing factors differ
appreciably (at 2100 K the overestimation rate constant by the
CVT method is 19% according to the anharmonic CUS
approximation and only 4% according to classical trajectories);
however, in both cases recrossing has little influence on the
rate constant (less than 20% at 2100 K, and less than 14% at
1500 K). Consequently, we will assume that recrossing effects
can be neglected.

4.3. Tunneling Factors. Tunneling factors include two
quantum effects: tunneling and overbarrier nonclassical reflec-
tion. The latter was calculated using zero-curvature tunneling
(ZCT) probabilities and the parabolic approximation described
above. Underbarrier tunneling probabilities were calculated
using the small-curvature tunneling (SCT) approach, the large-
curvature tunneling (LCT) approach versions 3 (LCT3) and 4

(LCT4), and the least-action tunneling approach (LAT). LCT3
was used with the harmonic and anharmonic approximations
for vibrations, while LCT4 was used only with harmonic
vibrations. The tunneling factors are listed in Tables 2 and 3.

From Table 2 we can see that at 150 K tunneling mostly
takes place through tunneling paths intermediate to the LCT3
path and the SCT path. Thus, at 150 K, the LAT tunneling factor
is about twice the values of the SCT and LCT3 factors. As
energy increases, the dominant tunneling paths approach the
LCT3 paths, so that LCT3 is larger than SCT above 200 K,
and the optimum tunneling paths are the LCT3 paths for most
of the energies.

As a consequence of the above, the microcanonically
optimized multidimensional tunneling approach (µOMT) cannot
provide an adequate description of low-energy tunneling, since
optimum tunneling paths are neither SCT nor LCT3 tunneling
paths. Thus,µOMT tunneling factors at 150 K are significantly
lower than LAT factors. However, since LCT3 paths are close
to the high-energy optimum tunneling paths, the difference
between the LAT andµOMT factors diminishes rapidly as
temperature increases, being less than 15% at 250 K.

As mentioned above, LCT4 was developed to solve problems
related to the harmonic approximation; therefore, we did not
use LCT4 tunneling when anharmonicity was included. In any
case, we checked that LCT3 and LCT4 methods predict the
same boundaries between adiabatic and nonadiabatic zones, and
that the LCT4 anharmonic correction to the effective potential
for tunneling was zero. Therefore, anharmonic LCT3 and
anharmonic LCT4 methods give the same results.

Table 3 shows the tunneling factors calculated under the
harmonic approximation. Note that the SCT tunneling factors

Figure 2. Recrossing factor,Γ(T). The solid line is the canonical
unified statistical theory calculation, and the dotted line is the classical
trajectories calculation.

TABLE 2: Semiclassical Tunneling Coefficients Calculated
Using the Small-Curvature Tunneling (SCT),
Large-Curvature Tunneling Version 3 (LCT3),
Microcanonically Optimized Multidimensional Tunneling
(µOMT), and Least-Action Tunneling (LAT) Methods with
Anharmonic Vibrations

T (K) SCT LCT3 µOMT LAT

150 23.76 22.24 27.91 44.46
200 6.40 7.16 7.78 9.99
250 3.42 3.98 4.14 4.82
300 2.40 2.81 2.87 3.19
400 1.66 1.92 1.94 2.06
600 1.26 1.42 1.42 1.46
800 1.14 1.26 1.26 1.28

1000 1.09 1.18 1.18 1.20
1500 1.04 1.10 1.10 1.11
2100 1.02 1.06 1.07 1.07

TABLE 3: Semiclassical Tunneling Coefficients Calculated
Using the Small-Curvature Tunneling (SCT),
Large-Curvature Tunneling Version 3 (LCT3),
Large-Curvature Tunneling Version 4 (LCT4),
Microcanonically Optimized Multidimensional Tunneling
Based on LCT3 (µOMT3), Microcanonically Optimized
Multidimensional Tunneling Based on LCT4 (µOMT4), and
Least-Action Tunneling (LAT) Methods with Harmonic
Vibrations

T (K) SCT LCT3 µOMT3 LCT4 µOMT4 LAT

150 12.54 23.73 24.58 9.25 13.45 41.72
200 3.88 7.43 7.49 3.65 4.23 9.68
250 2.34 4.08 4.09 2.34 2.52 4.75
300 1.79 2.86 2.87 1.83 1.91 3.16
400 1.38 1.95 1.95 1.41 1.44 2.06
600 1.15 1.44 1.44 1.17 1.18 1.47
800 1.08 1.27 1.27 1.09 1.10 1.29

1000 1.05 1.19 1.19 1.06 1.06 1.21
1500 1.02 1.11 1.11 1.03 1.03 1.12
2100 1.01 1.07 1.07 1.01 1.01 1.08
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are smaller than the LCT3 ones, so thatµOMT factors based
on LCT3 are very close to LCT3 factors. Moreover, theµOMT
method predicts smaller tunneling factors than the LAT method,
the differences being slightly smaller than those obtained from
anharmonic calculations. The lower values obtained for har-
monic SCT coefficients when compared to the anharmonic SCT
results can be explained by the shape of theVa

G(s) curve near
the saddle point, which is thinner for the anharmonic case, since
the same behavior is also found in the ZCT factor (not shown
here).

LCT4 predicts much lower tunneling factors, less than half
the LCT3 factors. This is the expected behavior, because LCT4
was devised to reduce the overestimation of the LCT3 tunneling
caused by the harmonic approximation. However, if we compare
the anharmonic LCT3 calculations (which are supposed to be
more accurate), to harmonic LCT3 and harmonic LCT4 results,
the harmonic LCT4 method seems to severely underestimate
tunneling effect. The harmonic LCT3 factors are larger than
the anharmonic LCT3, as expected, but the differences are less
than 7% at 150 K, and they diminish as temperature increases.
However, the LCT4 values at 150 K are about half those
obtained with the anharmonic LCT3 method.

The reason for this underestimation of tunneling by the LCT4
method can be seen in Figures 3 and 4. Harmonic LCT3 locates
the boundaries of the nonadiabatic zone (shown as filled squares)
too close to the reaction path, as compared to the anharmonic
LCT3 boundaries (shown as filled circles in Figures 3 and 4).
The nonadiabatic region is larger and the adiabatic regions are
shorter when vibrations are harmonic. Therefore, when vibra-
tions are treated harmonically, some regions along the tunneling
path are treated as if they were nonadiabatic, but they are
adiabatic. The LCT3 effective potential for tunneling in these
regions is too low and it shows discontinuities at the boundaries.
However, when both harmonic and anharmonic LCT3 methods
consider the point to be in the nonadiabatic region, the two
approaches give similar values for the effective potential for
tunneling. Hence, the harmonic LCT3 approximation produces
unphysical results in the fragment of the tunneling path

considered to be in the nonadiabatic zone that the anharmonic
approximation locates in the adiabatic zone.

The LCT4 method minimizes the discontinuity due to the
transition between the adiabatic and nonadiabatic region by
adding a correction potential that accounts for the anharmonicity
of the vibrations. Note that in our calculations the LCT4
anharmonic correction is always positive and, therefore, the
LCT4 and LCT3 adiabatic/nonadiabatic boundaries coincide41

(shown as filled squares in Figures 3 and 4). The LCT4
anharmonic correction is computed as the difference between
the adiabatic effective potential and the nonadiabatic effective
potential at the boundaries, and it is linearly interpolated along
the nonadiabatic region of the tunneling path. Since the
correction is large and positive, it significantly increases the
height of the barrier to tunnel through. Thus, the LCT4 path is
much higher in energy than either the harmonic or anharmonic
LCT3 paths and, therefore, LCT4 tunneling probabilities are
much lower than those from anharmonic LCT3 calculations.

Harmonic LCT3 probabilities are very close to the anhar-
monic LCT3 ones, although the former are slightly higher at
low energies (because a small fraction of the barrier is removed),
and at high energies. In fact, LCT4 was developed to correct
the fact that according to the harmonic LCT3 approach the
reaction can have a region where the maximum of the effective
potential along the tunneling path is lower than the maximum
of the vibrationally adiabatic ground-state potential. As seen in
Figure 4 for a high-energy case, the anharmonic LCT3 path
entirely lies within the adiabatic region, but the harmonic LCT3
path has a nonadiabatic zone. The effective potential in this
zone erroneously taken as a nonadiabatic zone is too low, as
we saw in Figure 3 for a low-energy tunneling path. Therefore,
the maximum of the effective potential along this tunneling path
is at the adiabatic/nonadiabatic boundary, and it may be lower
than the maximum of the vibrationally adiabatic potential. As
a result, high-energies harmonic LCT3 tunneling probabilities
are higher than the anharmonic LCT3 probabilities. To correct
this deficiency, the LCT4 method adds a term that makes the
effective potential much higher than the anharmonic LCT3 one.

Therefore, for this reaction, the LCT4 method overcorrects
the harmonic LCT3 results because it increases the potential of
the whole harmonic LCT3 nonadiabatic region, which is in

Figure 3. Effective potential for tunneling calculated using the
anharmonic LCT3 method (solid line), harmonic LCT3 method (dotted
line), and harmonic LCT4 method (dashed line). The location of the
adiabatic/nonadiabatic boundaries are also shown (anharmonic LCT3,
solid circles; harmonic LCT3 and LCT4, solid squares). The energy of
the tunneling path is 2.1 kcal/mol below the energy of the adiabatic
barrier.

Figure 4. Effective potential for tunneling calculated using the
anharmonic LCT3 method (solid line), harmonic LCT3 method (dotted
line), and harmonic LCT4 method (dashed line). The location of the
adiabatic/nonadiabatic boundaries for harmonic LCT3 and LCT4
calculations are also shown (solid squares). The energy of the tunneling
path is 0.9 kcal/mol below the energy of the adiabatic barrier.
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general in good agreement with the anharmonic LCT3 nona-
diabatic potential, instead of correcting only the region where
harmonic LCT3 gives unphysical values of the effective
potential. In fact, it seems that the problems of the harmonic
LCT3 method are related to the location of the boundaries
between the adiabatic and nonadiabatic zones, rather than to
the calculation of the effective potential for tunneling along the
nonadiabatic region. Thus, if we use the anharmonic LCT3
adiabatic regions and the harmonic LCT3 nonadiabatic region,
the results are very close to those obtained with the fully
anharmonic LCT3. Conversely, if we use the anharmonic LCT3
adiabatic regions and the harmonic LCT4 nonadiabatic region,
the barrier to tunnel through is too high and tunneling is
underestimated. Hence, the LCT4 method, which is based on
correcting the energy of the nonadiabatic region, is inadequate
at least for this reaction.

4.4. Comparison with Accurate Quantal Rate Constants.
According to our previous discussions, our best values of the
rate constants are those obtained from the ahnarmonic ICVT/
LAT calculations. In Table 4, we compare these results to those
by Manthe et al.11 We also check the performance of the
anharmonic CUS/LAT and harmonic ICVT/LAT methods.
Figures 5 and 6 compare our ICVT/LAT values with the results
from ref 11 and the harmonic ICVT/µOMT results (based on
classical rotational partition functions) by Wang and Bian.12

Note that the latter are very close to our harmonic ICVT/LAT
results, since over the temperature range studied in ref 12, LAT

andµOMT (based on LCT3) tunneling factors are very close
each other and quantum effects on rotational partition functions
are very small.

From Figure 6, it can be seen that the differences between
VTST/ST and accurate rates are about 50% smaller when
anharmonicity is included. However, in Figure 5 it can be seen
that the harmonic results from ref 12 are very similar to both
our anharmonic ICVT/LAT calculations and accurate quantum
mechanical results. The agreement between the harmonic results
by Wang and Bian and our more accurate results is partially
due to a compensation of different errors: the underestimation
of the contribution of the bends is compensated by the
overestimation of the contribution of the stretch; the underes-
timation of tunneling by theµOMT method is compensated by
the overestimation of the low-temperature rate constants due
to the use of classical partition functions for rotations and the
harmonic approximation for vibrations. However, as we have
seen all throughout the paper, the errors are relatively small,
and although the harmonic results benefit from some fortunate
error cancellation, the harmonic ICVT/µOMT rates are close
to the accurate ones because the reaction is adequately described
by the harmonic VTST/ST methods.

From Figure 5, it can be seen that our values exhibit a more
pronounced curvature in the Arrhenius plot than the quantal
values. We believe that the reason for the overestimation of
low-temperature rate constants is the overestimation of tunneling
effects, while the high-temperature deviation could be due to
anharmonicity, vibrational coupling (or rotational-vibrational
coupling), and transition state recrossing, as seen by the fact
that CUS/LAT rates agree better with accurate results (Figure
6).

TABLE 4: Variational Transition State Theory and Quantal Rate Constants (in cm3‚molecule-1‚s-1) for the H2 + Cl Reaction
(in Parentheses, Percentage Deviation from the Accurate Quantal Results)

T (K) ICVT/LAT CUS/LAT harmonic ICVT/LAT quantala

150 1.36× 10-17 (44%) 1.35× 10-17 (43%) 1.68× 10-17 (78%) 9.45× 10-18

200 3.58× 10-16 (28%) 3.58× 10-16 (28%) 4.72× 10-16 (63%) 2.89× 10-16

250 3.01× 10-15 (8%) 3.00× 10-15 (8%) 3.89× 10-15 (39%) 2.79× 10-15

300 1.35× 10-14 (-1%) 1.34× 10-14 (-1%) 1.71× 10-14 (25%) 1.36× 10-14

400 9.84× 10-14 (-8%) 9.71× 10-14 (-10%) 1.22× 10-13 (13%) 1.07× 10-13

600 8.76× 10-13(-9%) 8.47× 10-13(-12%) 1.07× 10-12(12%) 9.59× 10-13

800 3.02× 10-12(-2%) 2.85× 10-12(-7%) 3.72× 10-12(21%) 3.07× 10-12

1000 6.94× 10-12 (9%) 6.40× 10-12(1%) 8.65× 10-12 (36%) 6.34× 10-12

1500 2.57× 10-11 (55%) 2.23× 10-11(35%) 3.32× 10-11 (100%) 1.66× 10-11

2100 6.53× 10-11 5.29× 10-11 8.81× 10-11

mean error 16% 12% 40%

a Reference 11.

Figure 5. Arrhenius plot of the rate constants of the H2 + Cl reaction.
The solid line denotes the ICVT/LAT values. The dashed line is the
harmonic ICVT/µOMT values from ref 12. The dotted line is the
accurate quantal results from ref 11.

Figure 6. Percentage deviation from accurate quantal results. The solid
line is the ICVT/LAT values, the dahed line is the CUS/LAT values,
and the dotted line is the harmonic ICVT/µOMT results from ref 12.
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In brief, VTST/ST results agree very well with quantal
accurate values even when the harmonic approximation is used
and tunneling is computed using theµOMT method. This can
be seen from the small values of the mean errors in Table 4
(computed as the height of the rectangle whose area is the same
as the unsigned area under the curve in Figure 6).

5. Conclusions

A detailed analysis of the influence of different factors on
the accuracy of thermal rate constants calculated by transition
state theory allows us to learn which the weakest points of this
method are and how to improve its performance. To carry out
such analysis we need a realistic potential energy surface and
accurate results to compare to. The reaction H2 + Cl f HCl +
H fulfills these requirements.

Figure 7 summarizes the influence of the anharmonicity,
recrossing, tunneling, and quantum effects on the rotational
partition functions. Our results show that anharmonicity has a
significant effect, so that the differences between VTST/ST and
quantal rates are about 50% smaller when anharmonicity is
included. Nevertheless, the harmonic results are also reasonably
reliable. On the other hand, the LCT4 method, which is supposed
to improve the LCT3 results when vibrations are treated as
harmonic, underestimate the magnitude of the tunneling effect.
Thus, the LCT3 method works better than LCT4 either treating
the vibrations harmonically or anharmonically.

Recrossing effects have negligible effect on the reaction
dynamics, although it may be appreciable at high temperatures.
Tunneling, however, is very important. The agreement between
ICVT/LAT and quantal rates at 150 K, where 98% of the

reaction goes by tunneling, is very encouraging. The LCT3 and
µOMT (based on LCT3) methods for tunneling are also quite
accurate above 200 K, where 93% of the reaction occurs by
tunneling.

However, a special advantage of transition state theory is that
it can be applied to large-size systems, including enzymatic
reactions.23,47 It is therefore interesting to extrapolate our
findings to the calculation of large systems.

Anharmonicity of the vibrational modes which are not directly
involved in the reaction have a negligible effect on the rate
constants. The anharmonicity of the modes which correspond
to free translations and vibrations that evolve to vibrations
(usually called transitional modes), such as the bending modes
in this reaction, or the anharmonicity of the mode directly
involved in the reaction, such as the stretching mode in our
study, largely contribute to the rate. Our calculations show that
the separable-mode approximation seems to be very reliable,
the anharmonicity of the bending modes may have an important
effect on the rate constant, and anharmonicity of the stretching
mode have a significant effect on conventional transition state
theory rate constants, although most of its effect is due to the
anharmonicity of the H2 stretch. Moreover, the anharmonicity
of the stretch at the variational transition state cancels out the
anharmonicity of the H2, and the harmonic approximation for
the stretch works well for variational transition state theory. With
respect to large-size systems, we can also expect some
compensation in the stretch anharmonicity and, therefore, the
anharmonicity of the transitional modes will have the largest
effect on the rate constants. Thus, if the transition state has very

Figure 7. Percentage change in the rate constants from harmonic ICVT calculations with classical rotational partition functions upon including
anharmonicity in the bends (centrifugal oscillator approximation), anharmonicity in the stretch (WKB approximation), recrossing factor (CUS
approximation), quantum rotational partition functions, and tunneling (LAT approximation).
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low transitional frequencies (for example, loose transition states),
then anharmonicity can have a large impact on rate constants.46,48

For this reaction we found that, as expected, recrossing can
be neglected. However, recrossing and related nonequilibrium
effects may be important for reactions in large-size systems,
when the dynamics of the environment are slow on the time
scale over which the transition state is crossed. A reactant-like
environment can push the system back toward reactants after
having crossed the transition state. The study of small systems
is not able to provide satisfactory conclusions with regard to
recrossing and nonequilibrium effects in large systems; this is
an issue that requires further study.

Tunneling is very important for reactions involving a light
atom transfer. We have seen that the LCT4 method is unable
to deal with the problems of the LCT3 method associated with
anharmonicity. The LCT4 method adds a correction to the
effective tunneling energy along the nonadiabatic region of the
tunneling path, but it seems that the problem of the harmonic
LCT3 method is the location of the boundaries between the
adiabatic and nonadiabatic zones. We conclude that the LCT4
method is less reliable than LCT3 under the harmonic ap-
proximation, although further work is needed to settle this point.
On the other hand, the LAT approximation is more reliable than
the µOMT method at very low temperatures for this reaction.
In general, we can expect that when theµOMT tunneling factor
differs significantly from both the SCT and LCT3 factors, the
angle between the reaction path and the tunneling path largely
depends on the tunneling energy, and theµOMT method may
be underestimating tunneling effects.

Finally, variational transition state with semiclassical tunnel-
ing coefficients under the harmonic approximation can be
expected to provide reasonably accurate rate constants for the
H2 + Cl reaction. Thus, our results give us confidence in the
values given in ref 12.
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Phys.2000, 2, 2345.
(23) Truhlar, D. G.; Gao, J.; Garcia-Viloca, M.; Alhambra, C.; Corchado,

J. C.; Sa´nchez, M. L.; Poulsen, T. D.Int. J. Quantum Chem.2004, 100,
1136.

(24) Fukui, K. In The World of Quantum Chemistry; Daudel, R.,
Pullman, B., Eds.; Reidel: Dordrecht, The Netherlands, 1974; p 113.
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